Problem 1

One of the legs of a right triangle has length 4 cm . Express the length of the altitude perpendicular to the hypotenuse as a function of the length of the hypotenuse.

Solution

Draw a schematic of the right triangle with the altitude perpendicular to the hypotenuse.

Take the sine and cosine of the labelled angle θ.

$$
\left\{\begin{aligned}
\cos \theta & =\frac{4}{h} \\
\sin \theta & =\frac{a}{4}
\end{aligned}\right.
$$

Square both sides of each equation.

$$
\left\{\begin{array}{l}
\cos ^{2} \theta=\frac{16}{h^{2}} \\
\sin ^{2} \theta=\frac{a^{2}}{16}
\end{array}\right.
$$

Add the respective sides of these equations.

$$
\cos ^{2} \theta+\sin ^{2} \theta=\frac{16}{h^{2}}+\frac{a^{2}}{16}
$$

Use the fact that $\cos ^{2} \theta+\sin ^{2} \theta=1$ to eliminate θ.

$$
1=\frac{16}{h^{2}}+\frac{a^{2}}{16}
$$

Solve for a^{2}.

$$
a^{2}=\frac{16}{h^{2}}\left(h^{2}-16\right)
$$

Therefore, taking the square root of both sides, the length of the altitude in centimeters is

$$
a=\frac{4}{h} \sqrt{h^{2}-16} .
$$

